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The Problem 

• Faulty requirements cause 

• 60% – 80% of project failures [1] 

• 80% of all software rework [2] 

 

• Inconsistency : a common requirement fault 
• System contains nodes and a server. 

• Nodes A, B, and C must connect to the server within the first 5 
seconds. 

• Connections cannot be established simultaneously. 

• It takes 2 seconds to establish a connection. 

 

 



Our Goal 

• Detect inconsistencies 

• Focus on requirements stated in natural language 

• Focus on temporal constraints 

 

• Minimize human involvement 

 

• A language formal and human readable 

 

 

 

 



Proposed Approach 

• Temporal Action Language TAL as bridge 

Once a message is sent, it is received within 10 ms 

if terminate send(Sender,Msg,Receiver) then 
received(Receiver,Msg,Sender) @ ≤ 10ms after 

Requirements 
In NL 

TAL Representation 

sat1(c6,action(Sender, send(Msg, Receiver)),S) :- 
happen(ter(action(Sender, send(Msg, Receiver))),S), 
horizon$>=time(S)+varZ, node(Sender), message(Msg), 
node(Receiver).                               And several more such commands 

Low Level Logic 
Formalism 

Phase 1: Need human involvement 

Phase 2: Automated 



Temporal Action Language (TAL) 
Syntax 

• Syntax 

• Declarations 

• sort  node 

• fluent  connected(nodeA, serA) 

• action  sendMsg(nodeA) 

• Action Definitions: reuse AL (Baral, Gelfond 2000) 

• connect(serA, nodeA) 

  causes connected(nodeA, serA) if systemOn 

• impossible write(nodeA, serA) 

             if not connected(serA, nodeA) 
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Temporal Constraints 

• < prompt | fluent > @ < when > 
• prompt:  commence Act terminate Act 

 

• Examples 
• terminate dropConn(serA, nodeA)  

 @ ≤ 15 second after startTime 

 

• commence sendMsg(nodeA)  

 @ ≤ 5 seconds after terminate estConn(nodeA) 

 

• received(serA,message,nodeA) 

   @ ≤ 10 millisecond after terminate send(nodeA, msg, serA)  

 



Temporal Action Language (TAL)  
Semantics 

• Semantics 

• Transition system 

• States determined by fluents 

• Arcs labeled with prompts or “Time" 

• Illustrate all possible ways for system to evolve 

• Path 

• A particular scenario 

• Timed path 

• A scenario labeled with times when changes occur 
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Temporal Action Language (TAL) 
Semantics 

4 5 
Transition 

System 

commence 
estConn(nodeA) 

terminate 
estConn(nodeA) 

commence 
sendMsg(nodeA) 

commence 
estConn(nodeB) 

terminate 
estConn(nodeB) 

commence 
estConn(nodeA) 

3 2 

1 
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Temporal Action Language (TAL) 
Semantics 

1 

4 

2 

5 

3 

Path 

commence 
estConn(nodeA) 

terminate 
estConn(nodeA) 

commence 
sendMsg(nodeA) 

commence 
estConn(nodeB) 

terminate 
estConn(nodeB) 

commence 
estConn(nodeA) 
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Temporal Action Language (TAL) 
Semantics 

1 

4 

2 

5 

3 

Timed 
Path 

commence 
estConn(nodeA) 

1st second 

terminate 
estConn(nodeA) 

3rd second 

commence 
sendMsg(nodeA) 

7th second 

commence 
estConn(nodeB) 

terminate 
estConn(nodeB) 

commence 
estConn(nodeA) 
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Temporal Action Language (TAL) 
Semantics 

1 

4 

2 

5 

3 

Timed 
Path 

commence 
estConn(nodeA) 

1st second 

terminate 
estConn(nodeA) 

3rd second 

commence 
sendMsg(nodeA) 

7th second 

commence 
estConn(nodeB) 

terminate 
estConn(nodeB) 

commence 
estConn(nodeA) 

Node A must connect to the 
server in the first 5 seconds. 

Satisfied 



Temporal Action Language (TAL) 

Consistency Checking 

• Valid timed path P 

• All temporal constraints satisfied along P 

 

• Consistency 

• Arbitrarily long valid timed paths exist 

• Arbitrarily long system runs possible 

 

• Limited consistency 

• Timed paths up to a certain time horizon 

• No inconsistency shows up prior to the horizon 

 



Temporal Action Language (TAL) 

Consistency Checking 

• To detect inconsistency search for a valid timed path 

• Translate TAL into low-level formal system 

• Use reasoning tools of that system  

 

 

 



Validation 

• So far: 

• Use NASA CM1 requirements 

• Generate a TAL theory for a subset of CM1 set that 
includes all temporal requirements 

• Translate that TAL theory into answer set programming 
(ASP) 

• Use ASP solver clingcon for processing 

 

 

 

 

 



Related Work 

• Software Cost Reduction 

• Heitmeyer, Labaw, and Kiskis, 1995 [6] 

• Timed automata and temporal logic 

• Knapp, Merz, and Rauh, 2002 [7] 

• Bengtsson, Larsen, Larsson, Pettersson, and Yi, 1996 [8] 

• Bozga, Daws, Maler, Olivero, Tripakis, and Yovine 1998 [9] 

• UML 

• Selic, 1998 [10] 

 

 



Future Work 

• From natural language to TAL 
• Partially automate generation of TAL theories from natural 

language text 

 

• From TAL to low level logic formalism 
• ASP (Completed, but more work on translation optimization and 

performance needed) 

• Temporal logics 

• Timed automata 

 

• Systematic experiments 

• Seek broad feedback on TAL readability, design 
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Thank you! 
 

Questions? 


